Igramafia2.ru

Igramafia2.ru - перевивной проект

Иттрий применение, иттрий железный гранат, иттрий оксид куплю
39 СтронцийИттрийЦирконий
Водород Гелий Литий Бериллий Бор Углерод Азот Кислород Фтор Неон Натрий Магний Алюминий Кремний Фосфор Сера Хлор Аргон Калий Кальций Скандий Титан Ванадий Хром Марганец Железо Кобальт Никель Медь Цинк Галлий Германий Мышьяк Селен Бром Криптон Рубидий Стронций Иттрий Цирконий Ниобий Молибден Технеций Рутений Родий Палладий Серебро Кадмий Индий Олово Сурьма Теллур Иод Ксенон Цезий Барий Лантан Церий Празеодим Неодим Прометий Самарий Европий Гадолиний Тербий Диспрозий Гольмий Эрбий Тулий Иттербий Лютеций Гафний Тантал Вольфрам Рений Осмий Иридий Платина Золото Ртуть Таллий Свинец Висмут Полоний Астат Радон Франций Радий Актиний Торий Протактиний Уран Нептуний Плутоний Америций Кюрий Берклий Калифорний Эйнштейний Фермий Менделевий Нобелий Лоуренсий Резерфордий Дубний Сиборгий Борий Хассий Мейтнерий Дармштадтий Рентгений Коперниций Унунтрий Флеровий Унунпентий Ливерморий Унунсептий Унуноктий
39Y
Внешний вид простого вещества

Светло-серебристый редкоземельный металл
Свойства атома
Имя, символ, номер

И́ттрий / Yttrium (Y), 39

Атомная масса
(молярная масса)

88,90585 а. е. м. (г/моль)

Электронная конфигурация

[Kr] 4d1 5s2

Радиус атома

178 пм

Химические свойства
Ковалентный радиус

162 пм

Радиус иона

(+3e) 89,3 пм

Электроотрицательность

1,22 (шкала Полинга)

Электродный потенциал

0

Степени окисления

3

Энергия ионизации
(первый электрон)

615,4 (6,38) кДж/моль (эВ)

Термодинамические свойства простого вещества
Плотность (при н. у.)

4,47 г/см³

Температура плавления

1795 K

Температура кипения

3 611 K

Теплота плавления

11,5 кДж/моль

Теплота испарения

367 кДж/моль

Молярная теплоёмкость

26,52[1] Дж/(K·моль)

Молярный объём

19,8 см³/моль

Кристаллическая решётка простого вещества
Структура решётки

гексагональная

Параметры решётки

a=3,647 c=5,731 Å

Отношение c/a

1,571

Температура Дебая

[2] 280 K

Прочие характеристики
Теплопроводность

(300 K) (17,2) Вт/(м·К)

39
Иттрий
Y
88,906
4d15s2

И́ттрий — элемент побочной подгруппы третьей группы пятого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 39. Обозначается символом Y (лат. Yttrium). Простое вещество иттрий (CAS-номер: 7440-65-5) — металл светло-серого цвета. Существует в двух кристаллических модификациях: α-Y с гексагональной решёткой типа магния, β-Y с кубической объёмноцентрированной решёткой типа α-Fe, температура перехода α↔β 1482 °C[1].

Содержание

История

В 1794 финский химик Юхан (Иоганн) Гадолин (1760—1852) выделил из минерала иттербита оксид элемента, который он назвал иттрием. В 1843 К. Г. Мосандер доказал, что этот оксид на самом деле является смесью оксидов иттрия, эрбия и тербия и выделил из этой смеси Y2O3. Металлический иттрий, содержащий примеси эрбия, тербия и других лантаноидов, был получен впервые в 1828 Ф. Велером.

Нахождение в природе

Иттрий — химический аналог лантана. Кларк 26 г/т, содержание в морской воде 0,0003 мг/л[3]. Иттрий почти всегда содержится вместе с лантаноидами в минеральном сырье. Несмотря на неограниченный изоморфизм, в группе редких земель в определённых геологических условиях возможна раздельная концентрация редких земель иттриевой и цериевой подгрупп. Например, с щелочными породами и связанными с ними постмагматическими продуктами преимущественное развитие получает цериевая подгруппа, а с постмагматическими продуктами гранитоидов с повышенной щёлочностью — иттриевая. Большинство фторкарбонатов обогащено элементами цериевой подгруппы. Многие тантало-ниобаты содержат иттриевую подгруппу, а титанаты и титано-тантало-ниобаты — цериевую. Главнейшие минералы иттрия — ксенотим YPO4, гадолинит Y2FeBe2Si2O10.

Месторождения

Главные месторождения иттрия расположены в Китае, Австралии, Канаде, США, Индии, Бразилии, Малайзии[4].

Получение

Соединения иттрия получают из смесей с другими редкоземельными металлами экстракцией и ионным обменом. Металлический Y получают восстановлением безводных галогенидов иттрия литием или кальцием c последующей отгонкой примесей.

Физические свойства

Иттрий — металл светло-серого цвета. Существует в двух кристаллических модификациях: α-Y с гексагональной решёткой типа магния (a=3,6474 Å; с=5,7306 Å; z=2; пространственная группа P63/mmc), β-Y с кубической объёмноцентрированной решёткой типа α-Fe (a=4,08 Å; z=2; пространственная группа Im3m), температура перехода α↔β 1482 °C, ΔH перехода 4,98 кДж/моль. Температура плавления 1528 °C, температура кипения около 3320 °C. Иттрий легко поддается механической обработке[1].

Изотопы

Иттрий моноизотопный элемент, в природе представлен одним стабильным нуклидом 89Y[1].

Химические свойства

Металл неустойчив на воздухе.

До 1482 °C устойчива a-модификация: решетка гексагональная типа решетки Mg, а = 0,36474 нм и с = 0,57306 нм. Выше 1482 °C устойчива b-модификация: решетка кубическая типа a-Fe. Температура плавления 1528 °C, кипения 3320 °C, плотность 4,45 кг/дм3. На воздухе Y покрывается плотной защитной оксидной пленкой. При 370—425 °C образуется плотная черная пленка оксида. Интенсивное окисление начинается при 750 °C. Компактный металл окисляется кислородом воздуха в кипящей воде, реагирует с минеральными кислотами, уксусной кислотой, не реагирует с фтороводородом. Иттрий при нагревании взаимодействует с галогенами, водородом, азотом, серой и фосфором. Оксид Y2О3 обладает основными свойствами, ему отвечает основание Y(ОН)3.

Применение

Иттриевая керамика

Керамика для нагревательных элементов

Хромит иттрия —это материал для лучших высокотемпературных нагревателей сопротивления способных эксплуатироваться в окислительной среде (воздух, кислород).

ИК — керамика

«Иттралокс»(Yttralox) — твёрдый раствор двуокиси тория в окиси иттрия. Для видимого света этот материал прозрачен, как стекло, но также он очень хорошо пропускает инфракрасное излучение, поэтому его используют для изготовления инфракрасных «окон» специальной аппаратуры и ракет, а также используют в качестве смотровых «глазков» высокотемпературных печей. Плавится «Иттрий-локс» лишь при температуре около 2207 °C.

Огнеупорные материалы

Оксид иттрия — чрезвычайно устойчивый к нагреву на воздухе огнеупор, упрочняется с ростом температуры (максимум при 900—1000 °C), пригоден для плавки ряда высокоактивных металлов (в том числе и самого иттрия). Особую роль оксид иттрия играет при литье урана. Одной из наиболее важных и ответственных областей применения оксида иттрия в качестве жаропрочного огнеупорного материала является производство наиболее долговечных и качественных сталеразливочных стаканов (устройство для дозированного выпуска жидкой стали), в условиях контакта с движущимся потоком жидкой стали оксид иттрия наименее размываем. Единственным известным и превосходящим по стойкости оксид иттрия в контакте с жидкой сталью является оксид скандия, но он чрезвычайно дорог.

Термоэлектрические материалы

Важным соединением иттрия является его теллурид. Имея малую плотность, высокую температуру плавления и прочность, теллурид иттрия имеет одну из самых больших термо-э.д.с среди всех теллуридов, а именно 921 мкВ/К (у теллурида висмута например 280 мкВ/К) и представляет интерес для производства термоэлектрогенераторов с повышенным КПД.

Сверхпроводники

Один из компонентов иттрий-медь-бариевой керамики с общей формулой YBa2Cu3O7-δ — перспективного высокотемпературного сверхпроводника с температурой сверхпроводящего перехода около 90 К.

Бериллид иттрия (равно как и бериллид скандия) является одним из лучших конструкционных материалов аэрокосмической техники и плавясь при температуре около 1920 °C, начинает окисляться на воздухе при 1670 °C (!). Удельная прочность такого материала весьма высока, и при использовании его в качестве матрицы для наполнения нитевидными кристаллами (усами) можно создать материалы, имеющие фантастические прочностные и упругие характеристики.

Сплавы иттрия

Иттрий является металлом, обладающим рядом уникальных свойств, и эти свойства в значительной степени определяют очень широкое применение его в промышленности сегодня и, вероятно, ещё более широкое применение в будущем. Предел прочности на разрыв для нелегированного чистого иттрия около 300 МПа (30 кг/мм²). Очень важным качеством как металлического иттрия, так и ряда его сплавов является то обстоятельство, что будучи активным химически, иттрий при нагревании на воздухе покрывается пленкой оксида и нитрида, предохраняющих его от дальнейшего окисления до 1000 °C. Перспективными областями применения сплавов иттрия являются авиакосмическая промышленность, атомная техника, автомобилестроение. Очень важно то обстоятельство, что иттрий и его некоторые сплавы не взаимодействуют с расплавленным ураном и плутонием, и их использование позволяет применить их в ядерном газофазном ракетном двигателе.

Легирование

Легирование алюминия иттрием повышает на 7,5 % электропроводность изготовленных из него проводов.

Иттрий имеет высокие предел прочности и температуру плавления, поэтому способен создать значительную конкуренцию титану в любых областях применения последнего (ввиду того, что большинство сплавов иттрия обладает большей прочностью, чем сплавы титана, а кроме того у сплавов иттрия отсутствует «ползучесть» под нагрузкой, которая ограничивает области применения титановых сплавов).

Иттрий вводят в жаростойкие сплавы никеля с хромом (нихромы) с целью повысить температуру эксплуатации нагревательной проволоки или ленты и с целью в 2—3 раза увеличить срок службы нагревательных обмоток (спиралей), что имеет громадное экономическое значение (использование вместо иттрия скандия ещё в несколько раз увеличивает срок службы сплавов).

Магнитные материалы

Изучается перспективный магнитный сплав — неодим-иттрий-кобальт.

Покрытия иттрием и его соединениями

Напыление (детонационное и плазменное) иттрия на детали двигателей внутреннего сгорания позволяет увеличить износостойкость деталей в 400—500[источник не указан 502 дня] раз по сравнению с хромированием.

Люминофоры

Окись и ванадат иттрия, легированные ионами европия, используются в производстве кинескопов цветных телевизоров.

Оксосульфид иттрия, активированный европием, применяется для производства люминофоров в цветном телевидении (красная компонента), а активированный тербием — для черно-белого телевидения.

Дуговая сварка

Добавлением иттрия в вольфрам резко снижают работу выхода (у чистого иттрия 3,3 эВ), что используется для производства иттрированных вольфрамовых электродов для аргонодуговой сварки и составляет значительную статью расхода металлического иттрия.

Гексаборид иттрия имеет так же малую работу выхода (2,22 эВ) и применяется для производства катодов мощных электронных пушек (электронно-лучевая сварка и резка в вакууме).

Другие сферы применения

Тетраборид иттрия находит применение в качестве материала для управления атомным реактором (имеет малое газовыделение по гелию и водороду).

Ортотанталат иттрия синтезируется и используется для производства рентгеноконтрастных покрытий.

Синтезированы иттрий-алюминиевые гранатысиграны»)(ИАГ), имеющие ценные физико-химические свойства, могут применяться и в ювелирном деле, и уже довольно давно применяемые в качестве технологичных и относительно дешёвых твердотельных лазеров. Важным лазерным материалом является ИСГГ — иттрий-скандий-галлиевый гранат.

Феррит иттрия применяется для производства супер-ЭВМ[источник не указан 502 дня], и хотя он уступает ферриту скандия в несколько раз, он дешевле.

Гидрид иттрия-железа применяют как аккумулятор водорода с высокой емкостью и достаточно дешевый.

Цены на иттрий

  • Иттрий чистотой 99—99,9 % стоит в среднем 115—185 $ за 1 кг.

Биологическая роль

Примечания

  1. 1 2 3 4 Редкол.:Кнунянц И. Л. (гл. ред.) Химическая энциклопедия: в 5 т. — Москва: Советская энциклопедия, 1990. — Т. 2. — С. 277. — 671 с. — 100 000 экз.
  2. Иттрий на Integral Scientist Modern Standard Periodic Table
  3. J.P. Riley and Skirrow G. Chemical Oceanography V. 1, 1965
  4. Иттрий :: Группа AMT&C

Ссылки

В Викисловаре есть статья «иттрий»
  • Иттрий на Webelements
  • Иттрий в Популярной библиотеке химических элементов


cv:Иттри

Иттрий применение, иттрий железный гранат, иттрий оксид куплю.

Dorcadion fulvum, Преславец (Хасковская область).